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© Introduccién.
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Introduccidn.

La geometria multisimpléctica puede entenderse como una generalizacién
de la geometria simpléctica al contexto de las teorias de campos clasicas.
Mientras que una variedad simpléctica estd equipada con una 2-forma
cerrada y no degenerada, la geometria multisimpléctica considera
variedades provistas de una (k+1)-forma cerrada y no degenerada,
adecuadas para describir sistemas con varias variables independientes.
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Introduccidn.

Este marco geométrico surge de manera natural en el estudio de
formulaciones covariantes de las ecuaciones de Euler—Lagrange,
especialmente en el contexto de los fibrados de jets y los fibrados
multimomento. La forma multisimpléctica codifica la dindmica del sistema
de forma intrinseca, extendiendo el formalismo Hamiltoniano clasico a
dimensiones superiores.

12 de enero de 2026
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Introduccidn.

Los origenes de la geometria multisimpléctica se remontan a los trabajos
de De Donder y Weyl sobre formulaciones Hamiltonianas de teorias de
campos. Su desarrollo geométrico moderno fue impulsado por
contribuciones fundamentales de Tulczyjew, Kijowski, y posteriormente
sistematizado por Gotay, Isenberg y Marsden, entre otros.
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Introduccidn.

Entre algunos de los trabajos mas importantes de los anteriores autores
que han influido en el posterior desarrollo de la geometria multisimpléctica
podemos destacar:

o T. De Donder, Théorie Invariantive du Calcul des Variations,
Gauthier-Villars, 1935.

o H. Weyl, Geodesic fields in the calculus of variations, Ann. of Math.,
1935.

o J. Kijowski, A finite-dimensional canonical formalism in the classical
field theory, Commun. Math. Phys., 1974.

e M. J. Gotay, J. Isenberg, J. E. Marsden, Momentum maps and
classical relativistic fields, Part | & 1, 1998.
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Contenidos.

© Espacios vectoriales multisimplécticos.
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Espacios vectoriales multisimplécticos.

Definicién

Un espacio vectorial multisimpléctico de orden k + 1 es un par (V,w)
formado por un espacio vectorial V y una (k + 1)-forma en V no
degenerada.

12 de enero de 2026 11/48
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Espacios vectoriales multisimplécticos.

Definicién

Un espacio vectorial multisimpléctico de orden k + 1 es un par (V,w)
formado por un espacio vectorial V y una (k + 1)-forma en V no
degenerada.

w se denomina forma multisimpléctica (de grado k + 1).
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Espacios vectoriales multisimplécticos.

Definicién

Un espacio vectorial multisimpléctico de orden k + 1 es un par (V,w)
formado por un espacio vectorial V y una (k + 1)-forma en V no
degenerada.

w se denomina forma multisimpléctica (de grado k + 1).
ww =0 <= v=0parav el
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Espacios vectoriales multisimplécticos.

Definicidon

Un espacio vectorial multisimpléctico de orden k + 1 es un par (V,w)
formado por un espacio vectorial V y una (k + 1)-forma en V no
degenerada.

w se denomina forma multisimpléctica (de grado k + 1).
ww =0 <= v=0parav el
La no-degeneracion de la forma multisimpléctica significa que la aplicacién
inducida:
&V — AP
V= w

es inyectiva.
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Espacios vectoriales multisimplécticos.

Dos espacios vectoriales multisimplécticos (V,w) y (V, &) del mismo orden
(k + 1), son isomorfos si existe un isomorfismo

RV

tal que:
(I)(\U(Vl), v ,\U(Vk+1)) = w(vl, ceey Vk+1)

paratodov; €V, (i=1,...,k+1).

12 de enero de 2026 12 /48
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Espacios vectoriales multisimplécticos.

Por [1] sabemos que cualquier espacio vectorial V/, el espacio V x V*
admite una forma simpléctica candnica € definida:

Q((v1, 1), (v2, 2)) = az(v1) — a1(w2)
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Espacios vectoriales multisimplécticos.

Por [1] sabemos que cualquier espacio vectorial V/, el espacio V x V*
admite una forma simpléctica candnica € definida:

Q((v1, 1), (v2, 2)) = az(v1) — a1(w2)

¢/ Esta estructura tiene su extension natural en el marco multisimpléctico?
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Espacios vectoriales multisimplécticos.

Por [1] sabemos que cualquier espacio vectorial V/, el espacio V x V*
admite una forma simpléctica candnica € definida:

Q((v1, 1), (v2, 2)) = az(v1) — a1(w2)

¢/ Esta estructura tiene su extension natural en el marco multisimpléctico?
Si. Dado un k con 1 < k < dim V, el espacio V x AKV* puede ser
equipado con una (k + 1)-forma canénica Q definida:

k+1

Q((Vla OZ]_), R (Vk-i-la ak-‘rl)) = Z(—l)ia;(V:[, R ‘,/\I'a s Vk-‘rl)
i=1
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Espacios vectoriales multisimplécticos.

Por [1] sabemos que cualquier espacio vectorial V/, el espacio V x V*
admite una forma simpléctica candnica € definida:

Q((v1, 1), (v2, 2)) = az(v1) — a1(w2)

¢/ Esta estructura tiene su extension natural en el marco multisimpléctico?
Si. Dado un k con 1 < k < dim V, el espacio V x AKV* puede ser
equipado con una (k + 1)-forma canénica Q definida:

k+1

Q((Vla OZ]_), R (Vk-i-la ak-‘rl)) = Z(—l)ia;(V:[, R ‘,/\I'a s Vk-‘rl)
i=1

Proposicién:

(V x AKV* Q) es un espacio vectorial multisimpléctico de orden k + 1.
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Espacios vectoriales multisimplécticos.

En adelante, por simplicidad, utilizaremos la notacién V\"/ =V x AkV*,
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Espacios vectoriales multisimplécticos.

Consideramos la siguiente aplicacién lineal sobreyectiva
TV —W
y su secuencia exacta corta

0> kerr—= VS W =0
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Espacios vectoriales multisimplécticos.

Consideramos la siguiente aplicacién lineal sobreyectiva
TV —W
y su secuencia exacta corta
0 kermr = V5 W —0

Denotamos por /\’,‘ﬂ el espacio de las k-formas exteriores.
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Espacios vectoriales multisimplécticos.

Consideramos la siguiente aplicacién lineal sobreyectiva
TV —W
y su secuencia exacta corta
0= kerr—= VS W—0
Denotamos por /\’,‘ﬂ el espacio de las k-formas exteriores.

K .
aENT<— A AV O = 0
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Espacios vectoriales multisimplécticos.

AéﬂQ/\i‘ﬂQ...Q/\’,ﬁ,lwg/\kV*

Denotamos
V) — v x Ak
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Espacios vectoriales multisimplécticos.

/\SW - /\:I'f7r cC...C /\’,ﬁ,lw C ARy
Denotamos
V) — v x Ak
)

Claramente, para 0 < r < k tenemos que V¥ es un subespacio de V§
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Espacios vectoriales multisimplécticos.

AéﬂQAi‘ﬁQ...Q/\f,lngkV*

Denotamos
V) — v x Ak

Claramente, para 0 < r < k tenemos que V¥ es un subespacio de V§

Proposicién:

Paracadar,con0<r<k—1y k—r <dmW, (V}rk’r),Q) €s un espacio
vectorial multisimpléctico de orden k + 1.
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Espacios vectoriales multisimplécticos.

La anterior proposicién nos indica que para cualquier fibrado 7 de un
espacio vectorial V/, hay una familia de subespacios vectoriales
multisimplécticos de (V§, Q).

La estructura multisimpléctica obtenida al restringir 2 a VD = v x Nk
es el modelo lineal para la estructura multisimpléctica candnica que surge

en la formulacién Hamiltoniana covariante de la teoria de campos (Ver [4]).
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Contenidos.

© Subespacios caracteristicos.
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Subespacios caracteristicos.

Sea (V,w) un espacio vectorial multisimpléctico con una (k 4+ 1)-forma no
degenerada w, y sea W un subespacio de V. Sea /, con 1 < [ < k,

Definicidn

El /-ésimo complemento ortogonal de W es un subespacio lineal de V
definido como:

W' = {v € V|isnwn..rmw = 0 para todo w; € W,i=1,...,1}
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Subespacios caracteristicos.

Sea (V,w) un espacio vectorial multisimpléctico con una (k 4+ 1)-forma no
degenerada w, y sea W un subespacio de V. Sea /, con 1 < [ < k,

Definicidn

El /-ésimo complemento ortogonal de W es un subespacio lineal de V
definido como:

W' = {v € V|isnwn..rmw = 0 para todo w; € W,i=1,...,1}

WJ_,l C WJ_,Q C...C WJ_,k
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Subespacios caracteristicos.

Sea (V,w) un espacio vectorial multisimpléctico con una (k 4+ 1)-forma no
degenerada w, y sea W un subespacio de V. Sea /, con 1 < [ < k,

Definicidn

El /-ésimo complemento ortogonal de W es un subespacio lineal de V
definido como:

W' = {v € V|isnwn..rmw = 0 para todo w; € W,i=1,...,1}

WJ_,l C WJ_,Q C...C WJ_,k

WL =V siempre que | > dim W
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Subespacios caracteristicos.

En [3] se enuncian y demuestran las siguientes propiedades:

o {0} =V yVH =0}

o UC W= W+ cutt

° (U—I— W)J_,/ C WJ_,I N UJ_,/;

o Ubhnwhkh ¢ (U+ W)J-’/”‘/?_1 para h +h < k+1;
o Uth + whh c (Un W)Y para 1= max{h, b};
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Subespacios caracteristicos.

W es un subespacio de un espacio vectorial multisimpléctico (V,w) de
orden k + 1, entonces:

e l-isotrépico si W ¢ W/
e |-coisotrépico si W/ c W
e |-Lagrangiano si W = W/
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Contenidos.

@ Caracterizacién de las estructuras multisimplécticas candnicas.
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Por [6] sabemos que:
(V,w) sea un espacio vectorial simpléctico y L un subespacio Lagrangiano
de V (que siempre existe)
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Por [6] sabemos que:

(V,w) sea un espacio vectorial simpléctico y L un subespacio Lagrangiano
de V (que siempre existe)

(V,w) = (V. Q)

Q((v1, 1), (v2, 22)) = az(v1) — a1(w2)
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Por [6] sabemos que:
(V,w) sea un espacio vectorial simpléctico y L un subespacio Lagrangiano
de V (que siempre existe)

(V,w) = (V1. Q)
con
Q((v1, 1), (v2, 22)) = az(v1) — a1(w2)

Todos los espacios vectoriales simplécticos de la misma dimensién "son
parecidos”, en el sentido de que son isomorfos a algtin (V},9).
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Caracterizacion de las estructuras multisimplécticas

candnicas.

.Y en el marco multisimpléctico?
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Caracterizacion de las estructuras multisimplécticas

candnicas.

.Y en el marco multisimpléctico?
i Como tienen que ser los espacios vectoriales multisimplécticos para que

sean isomorfos a alguno del tipo (V\’},Q)?
Donde 2 se define como:
k+1

Q(vi, 1), (Vips k1)) = > (=1 ai(va, -, 0y Vi)
i=1

24 /48
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Recordemos que V\k/ =V x Akv*,
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Recordemos que V\k/ = V x AKV*. Podemos identificar:
V=V x {0}y AkV* = {0} x AFV*

ambos son subespacios de V\"/.
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Recordemos que V\k/ = V x AKV*. Podemos identificar:
V=V x {0}y AkV* = {0} x AFV*

ambos son subespacios de V\k,.

Teorema:

V es un subespacio k-Lagrangiano de (V\’}, Q) y AKV* es un subespacio
1-Lagrangiano.
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Pongamos W = AKV*, tenemos entonces que:
A(VE /W) = ARV = W

y, por lo tanto
dimW = dim A% (V§/W)*
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Si tomamos dim V\’} = ny dimW = p entonces tenemos la siguiente

relacion:
_(n—»
P=\ «
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Caracterizacion de las estructuras multisimplécticas

candnicas.

Si tomamos dim V¥ = ny dimW = p entonces tenemos la siguiente

relacion:
_(n—»
P=\ «

Dado un espacio multisimpléctico n-dimensional (V,w) de orden k + 1, una
condicién necesaria para que sea isomorfo a un espacio multisimpléctico
canénico n-dimensional (V{, Q) es que V admita un subespacio
1-Lagrangiano W de dimensién p, tal que la anterior relacién se cumpla.

Observacion:
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Caracterizacion de las estructuras multisimplécticas
candnicas.

Teorema:
Sea (V,w) un espacio vectorial multisimpléctico de orden k + 1. Entonces,
(V,w) es isomorfo al espacio vectorial multisimpléctico canénico (Vf, Q) si
y solo si existe un subespacio W de V tal que:

@ W es 1-Lagrangiano.

o dimW = dim Ak (V/W)*
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Caracterizacion de las estructuras multisimplécticas
candnicas.

Teorema:

Sea (V,w) un espacio vectorial multisimpléctico de orden k + 1. Entonces,
(V,w) es isomorfo al espacio vectorial multisimpléctico canénico (Vf, Q) si
y solo si existe un subespacio W de V tal que:

@ W es 1-Lagrangiano.

o dimW = dim Ak (V/W)*

Corolario:

Sea v una forma de volumen de un espacio vectorial V
(k + 1)-dimensional, entonces el espacio multisimpléctico (V,v) es
isomorfo a un espacio multisimpléctico canénico de orden k + 1.
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© Variedades multisimplécticas.
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Variedades multisimplécticas.

Definicion:

Una variedad multisimpléctica (M, w) de orden k + 1 es un par formado
por una variedad diferenciable M y una (k + 1)-forma cerrada w sobre M
la cual es a su vez no degenerada. La forma diferencial w se denomina
forma multisimpléctica (de grado k + 1).

Angel Blasco Mufioz (Escuela Internacional dGeometria multisimpléctica: primeras definicic 12 de enero de 2026 30/48



Variedades multisimplécticas.

Definicion:

Una subvariedad N de una variedad multisimpléctica (M, w) de orden

k + 1 sera I-isotrépica (resp. |-coisotrépica, I-Lagrangiana), para 1 </ < k,
si para cada punto n € N, T,N es un subespacio l-isotrépico (resp.
I-coisotrépico, |-Lagrangiano) de un espacio vectorial multisimpléctico
(TaM,wp).
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Variedades multisimplécticas.

Definicion:

Una subvariedad N de una variedad multisimpléctica (M, w) de orden

k + 1 sera I-isotrépica (resp. |-coisotrépica, I-Lagrangiana), para 1 </ < k,
si para cada punto n € N, T,N es un subespacio l-isotrépico (resp.
I-coisotrépico, |-Lagrangiano) de un espacio vectorial multisimpléctico
(TaM,wp).

Como:
TN = [ (TaN)*
neN
N es l-isotrépico (resp. I-coisotrépico, I-Lagrangiano) si TN ¢ TN+
(resp. TN C TN, TN = TN*).
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Contenidos.

@ Estructuras Hamiltonianas en variedades multisimplécticas.
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea (M, w) una variedad multisimpléctica de orden k + 1:
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea (M,w) una variedad multisimpléctica de orden k + 1:

Definicidn:

Un campo vectorial X en M es locdlmente Hamiltoniano si Lxw =0
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea un campo vectorial X con una k-forma iyw exacta, es decir, ixw = da
para alguna (k — 1)-forma « de M, entonces:

Definicidn:

@ X es Hamiltoniano.

@ « es la forma Hamiltoniana (de orden k — 1).
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Estructuras Hamiltonianas en variedades multisimplécticas.

Definicidn:
Un campo multivectorial de grado m en una variedad M (con

m < n = dim M) es una seccién del fibrado A™(TM) — M (que es un
campo tensorial antisimétrico de grado m en M y contravariante).

El conjunto de los campos multivectoriales de grado m en una variedad M
lo denotamos por X™(M).
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Estructuras Hamiltonianas en variedades multisimplécticas.

Para todo p € M, hay un entorno U, C My campos vectoriales
X1,..., Xr € X(Up), con m < r < dim M, tal que:
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Estructuras Hamiltonianas en variedades multisimplécticas.

Para todo p € M, hay un entorno U, C My campos vectoriales
X1,..., Xr € X(Up), con m < r < dim M, tal que:

Xly,= D FrinX ALAX, 5 con fin e CF(Up)

1<h<..<im<r
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea X € X"(M) un campo multivectorial:

Definicidn:

@ X es homogéneo si existen Xi, ..., X, € X(M) tal que
X=X A...A\Xn.

@ X es locdlmente homogéneo si, para todo p € M, existen U, € M y
Xi,...,. Xy € %(Up) tal que X|Up =XiA... A X
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Estructuras Hamiltonianas en variedades multisimplécticas.

Todo campo multivectorial X € X™(M) define una contraccién con las
formas diferenciales Q € Q%(M).

xQu, = Y i ax,Q =

1<i <...<im<r

— Z fil"'i'"ixl ... iXmQ

1<ih<...<im<r
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Estructuras Hamiltonianas en variedades multisimplécticas.

Si X € X™(M), la derivada de Lie de Q € QK(M) es:

LxQ = d(ixQ) — (—1)™ixd
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea (M, Q) una variedad multisimpléctica de orden k:

Definicidn:

Un campo multivectorial X € X™(M) con (m < k) es un campo
multivectorial locdlmente Hamiltoniano si £LxQ = 0, es decir,
ixQ € QK=™(M) es una forma cerrada.
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea (M, Q) una variedad multisimpléctica de orden k:

Definicidn:

Un campo multivectorial X € X™(M) con (m < k) es un campo
multivectorial locdlmente Hamiltoniano si £LxQ = 0, es decir,
ixQ € QK=™(M) es una forma cerrada.

Por lo tanto, para todo p € M, existe U € My ¢ € QK=™=1(U) tal que
ixQ2 = d¢ (en U).
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea (M, Q) una variedad multisimpléctica de orden k:

Definicidn:

Un campo multivectorial X € X™(M) con (m < k) es un campo
multivectorial locdlmente Hamiltoniano si £LxQ = 0, es decir,
ixQ € QK=™(M) es una forma cerrada.

Por lo tanto, para todo p € M, existe U € My ¢ € QK=™=1(U) tal que
ixQ2 = d¢ (en U).

Definicidn:

¢ € Qk=m=L(U) es una forma localmente Hamiltoniana para X.
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Estructuras Hamiltonianas en variedades multisimplécticas.

Sea (M, Q) una variedad multisimpléctica de orden k:

Definicidn:

X € X™(M) es un campo multivectorial Hamiltoniano si ixQ € Qk~™(M)
es una forma exacta; es decir, existe ¢ € QK~™~1(M) tal que ixQ = dC.

En este caso ¢ € Q“"™~1(M) es la denominada forma Hamiltoniana para
X.
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Contenidos.

@ Modelos canénicos para variedades multisimplécticas. Coordenadas de
Darboux.
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Modelos candnicos para variedades multisimplécticas.

Coordenadas de Darboux.

Ver [5] para mas detalles:
o Fibrado tangente =—> Modelo canédnico para variedades simplécticas.

@ Fibrado de formas = Modelo canédnico para variedades simplécticas.
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Modelos candnicos para variedades multisimplécticas.

Coordenadas de Darboux.

Q@ es una variedad diferenciable. p : /\k(T*Q) — Q es el fibrado de las
k-formas en Q.
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Modelos candnicos para variedades multisimplécticas.

Coordenadas de Darboux.

Q@ es una variedad diferenciable. p : /\k(T*Q) — Q es el fibrado de las
k-formas en Q.
Existe una k-forma(canénica):

Qg € QK(AK(T*Q))

@Qa(Vl, R Vk) = i(p* VI, ooy Aps Vl)a

para:
o€ /\k(T*Q) y Vi,... Vg € Ta(/\k(T*Q))
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Modelos candnicos para variedades multisimplécticas.

Coordenadas de Darboux.

Qg = d9¢q € Q*TY(AK(T*)) es una forma cerrada y no-degenerada.
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Modelos candnicos para variedades multisimplécticas.

Coordenadas de Darboux.

Qg = d9¢q € Q*TY(AK(T*)) es una forma cerrada y no-degenerada.
(AF(T*@Q),Q¢q) es una variedad multisimpléctica de orden k -+ 1.
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Modelos candnicos para variedades multisimplécticas.

Coordenadas de Darboux.

(X’-,p,-l,__,,,-k) es un sistema natural de coordenadas en U C /\k(T* Q)
Oqlu = Pil,...,ikdXil AL A dx

Qqlu = C/Pil,...,ikC/Xi1 A A dx

son las coordenadas de Darboux en AK(T*Q).
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Modelos candnicos para variedades multisimplécticas.
Coordenadas de Darboux.

Cuidado !l

Al contrario que en las variedades simplécticas, las variedades
multisimplécticas, en general, no son (locdlmente) difeomorfas a sus
modelos candnicos, deben cumplir propiedades adicionales para asegurar la

existencia de coordenadas de Darboux para ellas. Ver [7] para mas
informacién.
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FIN.
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